addenda and errata

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[tetra- μ_2 -aqua-diaqua- μ_6 -oxalatobarium(II)] 2,4,6-trinitrophenolate monohydrate]. Corrigendum

Peng-Zhi Hong,^a Wen-Dong Song^{b*} and Zao-He Wu^c

^aSchool of Food Science and Technology, Guangdong Ocean University, People's Republic of China, ^bCollege of Science, Guangdong Ocean University, Zhan Jiang 524088, People's Republic of China, and ^cCollege of Aquatic Science, Guangdong Ocean University, Zhan Jiang 524088, People's Republic of China Correspondence e-mail: songwd60@126.com

Received 31 August 2007; accepted 18 December 2007

In the paper by Hong, Song & Wu [*Acta Cryst.* (2007), E**63**, o2296], the scheme shows the wrong structure. The correct scheme is shown below and the compound name is corrected to "poly[[di- μ_2 -aqua-diaqua-hemi- μ_6 -oxalato-bar ium(II)] 2,4,6-trinitrophenolate monohydrate", {[Ba(C₂O₄)_{0.5}-(H₂O)₄]C₆H₂N₃O₇·H₂O]_n.

metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[tetra- μ_2 -aqua-diaqua- μ_6 -oxalatobarium(II)] 2,4,6-trinitrophenolate monohydrate]

Peng-Zhi Hong,^a Wen-Dong Song^{b*} and Zao-He Wu^c

^aSchool of Food Science and Technology, Guangdong Ocean University, People's Republic of China, ^bCollege of Science, Guangdong Ocean University, Zhan Jiang 524088, People's Republic of China, and ^cCollege of Aquatic Science, Guangdong Ocean University, Zhan Jiang 524088, People's Republic of China Correspondence e-mail: songwd60@126.com

Received 24 April 2007; accepted 3 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.024; wR factor = 0.056; data-to-parameter ratio = 14.3.

In the title coordination polymer, {[Ba(C₂O₄)(H₂O)₆]-C₆H₂N₃O₇·H₂O}_n, each Ba^{II} ion is nine-coordinated by three O atoms from two oxalate ligands, two O atoms from two water molecules and four O atoms from μ_2 -bridging aqua ligands, and displays a distorted tricapped trigonal–prismatic geometry. The μ_6 -bridging oxalate ligands and μ_2 -aqua ligands link Ba^{II} ions to form a neutral layer. The coordinated water molecules link the 2,4,6-trinitrophenolate anions to form a supramolecular network *via* hydrogen-bonding interactions.

Related literature

For related literature, see: Li et al. (2003); Pierce-Butler (1982); Ward et al. (1984).

Experimental

Crystal data $[Ba(C_2O_4)(H_2O)_6]C_6H_2N_3O_7 \cdot H_2O$ $M_r = 499.54$ Monoclinic, $P2_1/c$ a = 15.1489 (2) Å b = 6.5736 (1) Å c = 15.3111 (2) Å $\beta = 93.557$ (1)°

V = 1521.78 (4) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 2.70 \text{ mm}^{-1}$
T = 293 (2) K
$0.19 \times 0.18 \times 0.16$ mm

Data collection

```
Bruker APEXII area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T<sub>min</sub> = 0.608, T<sub>max</sub> = 0.650
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.056$ S = 1.03 3654 reflections 256 parameters14 restraints 13176 measured reflections 3654 independent reflections 3126 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

4 (17) 2.1 2 (17) 2.0 9 (16) 2.2 9 (16) 2.5 0 (16) 1.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	915 (3) 1 837 (3) 1 961 (3) 1 974 (3) 1	59 (3) 69 (3) 46 (3) 18 (2)
2 (17) 2.0 9 (16) 2.2 9 (16) 2.5 0 (16) 1.9	$\begin{array}{cccc} 016 & (18) & 2.8 \\ 25 & (2) & 2.9 \\ 50 & (3) & 2.9 \\ 022 & (16) & 2 \\ \end{array}$	837 (3) 1 961 (3) 1 974 (3) 1	69 (3) 46 (3) 18 (2)
9 (16) 2.2 9 (16) 2.5 0 (16) 1.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	961 (3) 1 974 (3) 1	46 (3) 18 (2)
9 (16) 2.5 0 (16) 1.9	50(3) 2.9 222(16) 2.0	974 (3) 1	18 (2)
0 (16) 1.9	22(16) = 2.0	(07) (2) 1	
		097(3) 1	60 (3)
3 (16) 2.3	32 (2) 3.0	051 (3) 1	49 (3)
8 (16) 1.9	922 (17) 2.3	722 (3) 1	70 (3)
1 (16) 2.2	250 (17) 3.0	013 (3) 1	71 (3)
6 (16) 2.1	134 (17) 2.9	908 (3) 1	64 (3)
2 (16) 1.9	948 (17) 2.3	719 (3) 1	58 (3)
2 (16) 2.4	45 (2) 2.9	975 (3) 1	24 (2)
2 (16) 2.1	178 (18) 2.9	945 (3) 1	58 (3)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2.15 \\ (16) \\ (16) \\ (16) \\ (16) \\ (16) \\ (16) \\ (16) \\ (16) \\ (16) \\ (16) \\ (16) \\ (16) \\ (16) \\ (16) \\ (17) \\ (1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x, y - 1, z; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (vi) x - 1, y, z; (vii) -x, -y, -z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *SHELXTL* (Bruker, 1997).

The authors thank the Scientific and Technical Key Leading Project of Guangdong Province of China (grant No. B05119) and Guangdong Ocean University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2010).

References

- Brandenburg, K. (2001). *DIAMOND*. Version 3.0. Crystal Impact GbR, Bonn, Germany.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). *APEX2* (Version 6.12) and *SAINT* (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, Y. F., Zhang, T. L., Zhang, J. G., Ma, G. X., Song, J. C., Sun, Y. H. & Yu, K. B. (2003). *Chin. J. Inorg. Chem.* **19**, 861–864.
- Pierce-Butler, M. A. (1982). Acta Cryst. B38, 3097-3100.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Ward, D. L., Popov, A. I. & Poonia, N. S. (1984). Acta Cryst. C40, 238-241.

supplementary materials

Acta Cryst. (2007). E63, m2296 [doi:10.1107/S1600536807038159]

Poly[[tetra- μ_2 -aqua-diaqua- μ_6 -oxalato-barium(II)] 2,4,6-trinitrophenolate monohydrate]

P.-Z. Hong, W.-D. Song and Z.-H. Wu

Comment

2,4,6-trinitrophenolic acid have afforded a large number of O-chelated metal derivates, such as barium (Pierce-Butler, 1982), potassium (Li, *et al.* 2003), sodium (Ward, *et al.*, 1984) and so on.

As illustrated in Fig. 1, in the asymmetric unit of (I) each Ba^{II} centre is nine-coordinated by three carboxyl O atoms from two oxalato ligands, two O atoms from two water molecules and four O atoms from /m₂ bridging aqua ligands, and displaying a distorted tricapped trigonal prism geometry. All geometries are general. Via a Ba…Ba interaction between symmetrically related moieties the compound forms polymer structures with a Ba…Ba separation of 6.957 (3) Å that are further extended to a supramolecular network through intermolecular hydrogen bonding interaction among the cationic units, 2,4,6-trinitrophenolate anions and uncoordinated molecules (Table 1 and Fig. 2).

Experimental

The title complex was prepared by the addition of a stoichiometric amount of barium chloride (4.16 g, 20 mmol) and oxalic acid (1.80 g, 20 mmol) to a hot aqueous solution (25 ml) of 2,4,6-trinitrophenolic acid (4.58 g, 30 mmol). The pH was then adjusted to 7.0 to 8.0 with NaOH (1.2 g, 30 mmol). The resulting solution was filtered, and yellow crystals were obtained at room temperature on slow evaporation of the solvent over several days.

Refinement

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$; Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 or 0.85 Å and H···H = 1.29 or 1.39 Å, each within a standard deviation of 0.01 Å. Other H atoms with $U_{iso}(H) = 1.5 U_{eq}(O)$. The highest peak in the difference map is 0.84 (1) Å from Ba1 and the largest hole is 1.13 (2) Å from Ba1.

Figures

Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level for non-H atoms. [Symmetry codes:(i)-x, 1 - y, -z; (ii) -x, -y, -z; (iii) -x, y + 1/2, 1/2 - z; (iv) -x, y - 1/2, 1/2 - z.]

Fig. 2. The unit-cell packing diagram of (I). Hydrogen bonds are shown as dashed lines.

$Poly[[di-\mu_2-aqua-diaqua-hemi-\mu_6-oxalato-barium(II)] \ 2,4,6-trinitrophenolate \ monohydrate]$

Crystal data	
$[Ba(C_2O_4)_{0.5}(H_2O)_4]C_6H_2N_3O_7\cdot H_2O$	$F_{000} = 972$
$M_r = 499.54$	$D_{\rm x} = 2.180 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -p_2ybc	Cell parameters from 3600 reflections
a = 15.1489 (2) Å	$\theta = 1.7 - 28.0^{\circ}$
b = 6.57360 (10) Å	$\mu = 2.70 \text{ mm}^{-1}$
c = 15.3111 (2) Å	T = 293 (2) K
$\beta = 93.5570 \ (10)^{\circ}$	Block, yellow
$V = 1521.78 (4) \text{ Å}^3$	$0.19\times0.18\times0.16~mm$
Z = 4	

Data collection

3654 independent reflections
3126 reflections with $I > 2\sigma(I)$
$R_{\text{int}} = 0.028$
$\theta_{\rm max} = 28.0^{\circ}$
$\theta_{\min} = 2.7^{\circ}$
$h = -20 \rightarrow 19$
$k = -8 \rightarrow 8$
$l = -20 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.024$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.056$	$w = 1/[\sigma^2(F_0^2) + (0.0277P)^2 + 0.4903P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{max} < 0.001$
3654 reflections	$\Delta \rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$
256 parameters	$\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$
14 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ba	0.009199 (10)	0.090317 (19)	0.144062 (9)	0.02169 (6)
C1	0.53089 (19)	0.0665 (4)	0.32517 (18)	0.0287 (6)
H1	0.5152	0.0558	0.3828	0.034*
C2	0.61794 (18)	0.0706 (4)	0.30611 (17)	0.0272 (6)
C3	0.64955 (18)	0.0795 (4)	0.21936 (17)	0.0264 (6)
C4	0.57696 (19)	0.0866 (4)	0.15341 (17)	0.0286 (6)
C5	0.48959 (19)	0.0906 (4)	0.17056 (18)	0.0291 (6)
Н5	0.4462	0.1012	0.1251	0.035*
C6	0.46645 (18)	0.0786 (4)	0.25682 (18)	0.0266 (6)
C7	-0.00848 (17)	0.4258 (3)	-0.03987 (16)	0.0215 (5)
H1WA	0.182 (2)	-0.021 (3)	0.4331 (19)	0.026*
H1WB	0.2387 (13)	0.113 (4)	0.4163 (19)	0.026*
H2WA	0.0900 (16)	-0.317 (4)	0.1881 (15)	0.026*
H2WB	0.1540 (11)	-0.240 (4)	0.2382 (17)	0.026*
H3WA	0.1313 (16)	0.224 (4)	0.3221 (14)	0.026*
H3WB	0.1543 (15)	0.353 (4)	0.2658 (17)	0.026*
H4WA	0.2140 (16)	0.102 (4)	0.1052 (16)	0.026*
H4WB	0.1765 (18)	0.208 (3)	0.0395 (15)	0.026*
H5WA	-0.2039 (15)	0.144 (4)	0.1023 (15)	0.026*
H5WB	-0.1725 (18)	0.123 (4)	0.0273 (12)	0.026*
N1	0.68199 (17)	0.0555 (4)	0.38123 (16)	0.0374 (6)
N2	0.37473 (16)	0.0789 (3)	0.27700 (17)	0.0349 (6)
N3	0.59676 (18)	0.0979 (4)	0.06088 (16)	0.0386 (6)
O1	0.73001 (13)	0.0796 (3)	0.20391 (13)	0.0393 (5)
02	0.75026 (17)	0.1514 (5)	0.38100 (16)	0.0711 (8)

supplementary materials

03	0.66196 (17)	-0.0536 (4)	0.44163 (15)	0.0607 (7)
O4	0.35790 (16)	0.0651 (4)	0.35365 (16)	0.0553 (7)
05	0.31768 (15)	0.0929 (4)	0.21685 (17)	0.0556 (7)
06	0.54645 (17)	0.1997 (4)	0.01244 (15)	0.0593 (7)
07	0.65884 (16)	0.0004 (5)	0.03584 (15)	0.0611 (7)
08	-0.00452 (12)	0.2386 (2)	-0.02508 (10)	0.0256 (4)
09	0.02537 (13)	0.4939 (3)	0.11302 (11)	0.0311 (4)
O1W	0.18547 (15)	0.1042 (4)	0.42656 (16)	0.0439 (5)
O2W	0.10105 (13)	-0.2370 (3)	0.22765 (12)	0.0294 (4)
O3W	0.11131 (13)	0.2932 (3)	0.28179 (13)	0.0322 (4)
O4W	0.17396 (15)	0.1144 (3)	0.07199 (16)	0.0432 (5)
O5W	-0.16202 (14)	0.1761 (4)	0.07469 (14)	0.0397 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba	0.02843 (10)	0.01617 (8)	0.02048 (9)	0.00071 (6)	0.00166 (6)	0.00054 (5)
C1	0.0330 (16)	0.0297 (13)	0.0233 (13)	0.0002 (11)	0.0024 (11)	0.0015 (10)
C2	0.0257 (14)	0.0299 (13)	0.0256 (13)	-0.0018 (11)	-0.0009 (11)	0.0010 (10)
C3	0.0251 (14)	0.0293 (13)	0.0251 (13)	-0.0010 (11)	0.0024 (11)	0.0016 (10)
C4	0.0313 (15)	0.0329 (14)	0.0218 (13)	-0.0024 (11)	0.0033 (11)	0.0007 (10)
C5	0.0278 (15)	0.0323 (14)	0.0266 (13)	-0.0010 (11)	-0.0040 (11)	0.0004 (11)
C6	0.0232 (14)	0.0258 (13)	0.0311 (14)	0.0010 (11)	0.0039 (11)	0.0021 (10)
C7	0.0238 (13)	0.0196 (12)	0.0210 (12)	-0.0016 (10)	0.0005 (10)	0.0006 (9)
N1	0.0300 (14)	0.0570 (16)	0.0251 (12)	0.0012 (12)	0.0001 (10)	0.0040 (11)
N2	0.0250 (13)	0.0368 (13)	0.0430 (15)	0.0013 (10)	0.0034 (11)	0.0021 (10)
N3	0.0366 (15)	0.0548 (16)	0.0241 (12)	-0.0148 (13)	0.0011 (11)	-0.0023 (11)
01	0.0242 (11)	0.0616 (14)	0.0322 (11)	-0.0026 (10)	0.0033 (9)	0.0011 (9)
O2	0.0423 (15)	0.128 (2)	0.0418 (14)	-0.0344 (16)	-0.0089 (12)	0.0092 (15)
O3	0.0463 (15)	0.097 (2)	0.0383 (13)	-0.0038 (13)	-0.0067 (11)	0.0281 (13)
O4	0.0367 (14)	0.0888 (19)	0.0424 (14)	0.0053 (12)	0.0174 (11)	0.0069 (12)
O5	0.0272 (12)	0.0817 (19)	0.0568 (15)	0.0000 (11)	-0.0067 (11)	0.0038 (12)
O6	0.0700 (18)	0.0735 (17)	0.0332 (12)	-0.0032 (14)	-0.0053 (12)	0.0162 (12)
07	0.0420 (15)	0.107 (2)	0.0355 (13)	0.0007 (15)	0.0117 (11)	-0.0187 (14)
O8	0.0371 (11)	0.0156 (8)	0.0241 (9)	-0.0007 (8)	0.0018 (8)	-0.0003 (6)
O9	0.0480 (13)	0.0202 (9)	0.0241 (9)	-0.0037 (8)	-0.0060 (8)	0.0018 (7)
O1W	0.0266 (12)	0.0562 (14)	0.0490 (13)	0.0089 (11)	0.0037 (10)	0.0072 (11)
O2W	0.0300 (11)	0.0311 (10)	0.0269 (10)	0.0046 (9)	-0.0011 (8)	-0.0014 (8)
O3W	0.0325 (12)	0.0333 (11)	0.0304 (10)	-0.0008 (9)	-0.0016 (9)	0.0039 (8)
O4W	0.0305 (12)	0.0545 (14)	0.0440 (14)	0.0009 (10)	-0.0018 (10)	0.0108 (10)
O5W	0.0306 (12)	0.0619 (14)	0.0270 (11)	-0.0074 (11)	0.0042 (9)	-0.0005 (10)

Geometric parameters	(Å,	9)
----------------------	-----	----

Ba—O9	2.709 (2)	C5—C6	1.390 (4)
Ba—O8	2.763 (2)	С5—Н5	0.9300
Ba—O4W	2.795 (2)	C6—N2	1.442 (4)
Ba—O5W	2.799 (2)	C7—O9 ^v	1.250 (3)

Ba—O2W	2.825 (2)	С7—О8	1.252 (3)
Ba—O8 ⁱ	2.826 (2)	C7—C7 ^v	1.571 (5)
Ba—O3W	2.866 (2)	N1—O2	1.212 (3)
Ba—O2W ⁱⁱ	2.888 (2)	N1—O3	1.223 (3)
Ba—O3W ⁱⁱⁱ	2.949 (2)	N2—O4	1.220 (3)
Ba—Ba ^{iv}	6.957 (3)	N2—O5	1.227 (3)
Ba—Ba ⁱ	4.5603 (3)	N3—O7	1.219 (3)
Ba—Ba ⁱⁱ	4.6386 (2)	N3—O6	1.228 (3)
Ba—Ba ⁱⁱⁱ	4.6386 (2)	O1W—H1WA	0.832 (17)
C1—C2	1.368 (4)	O1W—H1WB	0.834 (17)
C1—C6	1.388 (4)	O2W—H2WA	0.810 (16)
C1—H1	0.9300	O2W—H2WB	0.809 (16)
C2—C3	1.441 (4)	O3W—H3WA	0.808 (16)
C2—N1	1.461 (3)	O3W—H3WB	0.813 (16)
C3—O1	1.256 (3)	O4W—H4WA	0.771 (16)
C3—C4	1.447 (4)	O4W—H4WB	0.796 (16)
C4—C5	1.366 (4)	O5W—H5WA	0.812 (16)
C4—N3	1.468 (4)	O5W—H5WB	0.812 (16)
O9—Ba—O8	59.49 (5)	O3W—Ba—O3W ⁱⁱⁱ	110.10 (3)
O9—Ba—O4W	77.44 (6)	O2W ⁱⁱ —Ba—O3W ⁱⁱⁱ	66.46 (5)
O8—Ba—O4W	68.10 (6)	C2—C1—C6	118.7 (3)
O9—Ba—O5W	80.09 (6)	C1—C2—C3	125.3 (2)
O8—Ba—O5W	63.84 (6)	C1—C2—N1	115.6 (2)
O4W—Ba—O5W	131.91 (6)	C3—C2—N1	119.1 (2)
O9—Ba—O2W	141.07 (6)	O1—C3—C2	123.7 (2)
O8—Ba—O2W	134.40 (5)	O1—C3—C4	125.0 (3)
O4W—Ba—O2W	78.19 (6)	C2—C3—C4	111.3 (2)
O5W—Ba—O2W	138.08 (6)	C5—C4—C3	124.8 (3)
O9—Ba—O8 ⁱ	129.44 (5)	C5—C4—N3	116.3 (2)
O8—Ba—O8 ⁱ	70.63 (5)	C3—C4—N3	118.9 (3)
O4W—Ba—O8 ⁱ	77.07 (6)	C4—C5—C6	119.1 (2)
O5W—Ba—O8 ⁱ	85.63 (6)	C1—C6—C5	120.8 (3)
O2W—Ba—O8 ⁱ	72.61 (5)	C1—C6—N2	118.7 (3)
O9—Ba—O3W	67.85 (5)	C5—C6—N2	120.5 (2)
O8—Ba—O3W	122.09 (5)	O9 ^v —C7—O8	125.6 (2)
O4W—Ba—O3W	79.03 (6)	O9 ^v —C7—C7 ^v	116.6 (2)
O5W—Ba—O3W	129.11 (6)	08—C7—C7 ^v	117.8 (2)
O2W—Ba—O3W	78.05 (5)	O2—N1—O3	124.0 (3)
O8 ⁱ —Ba—O3W	145.21 (5)	O2—N1—C2	119.2 (2)
O9—Ba—O2W ⁱⁱ	78.28 (6)	O3—N1—C2	116.8 (2)
O8—Ba—O2W ⁱⁱ	119.06 (5)	O4—N2—O5	123.2 (3)
O4W—Ba—O2W ⁱⁱ	144.51 (6)	O4—N2—C6	117.9 (2)
O5W—Ba—O2W ⁱⁱ	67.51 (6)	O5—N2—C6	118.9 (3)
O2W—Ba—O2W ⁱⁱ	106.29 (4)	O7—N3—O6	123.9 (3)

supplementary materials

O8 ⁱ —Ba—O2W ⁱⁱ	138.31 (5)	O7—N3—C4	119.0 (3)
O3W—Ba—O2W ⁱⁱ	67.99 (5)	O6—N3—C4	117.0 (3)
O9—Ba—O3W ⁱⁱⁱ	141.37 (6)	H1WA—O1W—H1WB	99 (3)
O8—Ba—O3W ⁱⁱⁱ	125.61 (5)	H2WA—O2W—H2WB	107 (2)
O4W—Ba—O3W ⁱⁱⁱ	141.16 (6)	H3WA—O3W—H3WB	104 (2)
O5W—Ba—O3W ⁱⁱⁱ	72.43 (6)	H4WA—O4W—H4WB	116 (2)
O2W—Ba—O3W ⁱⁱⁱ	67.69 (6)	H5WA—O5W—H5WB	104 (2)
O8 ⁱ —Ba—O3W ⁱⁱⁱ	75.52 (5)		

Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) -*x*, *y*+1/2, -*z*+1/2; (iii) -*x*, *y*-1/2, -*z*+1/2; (iv) , , ; (v) -*x*, -*y*+1, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1WB···O4	0.834 (17)	2.12 (2)	2.915 (3)	159 (3)
O1W—H1WA···O5W ⁱⁱⁱ	0.832 (17)	2.016 (18)	2.837 (3)	169 (3)
O2W—H2WB…O1 ^{vi}	0.809 (16)	2.25 (2)	2.961 (3)	146 (3)
O2W—H2WB···O2 ^{vi}	0.809 (16)	2.50 (3)	2.974 (3)	118 (2)
O2W—H2WA···O9 ^{vii}	0.810 (16)	1.922 (16)	2.697 (3)	160 (3)
O3W—H3WB…O1 ^{viii}	0.813 (16)	2.32 (2)	3.051 (3)	149 (3)
O3W—H3WA…O1W	0.808 (16)	1.922 (17)	2.722 (3)	170 (3)
O4W—H4WA···O5	0.771 (16)	2.250 (17)	3.013 (3)	171 (3)
O4W—H4WB…O1W ^{ix}	0.796 (16)	2.134 (17)	2.908 (3)	164 (3)
O5W—H5WA…O1 ^x	0.812 (16)	1.948 (17)	2.719 (3)	158 (3)
O5W—H5WA···O7 ^x	0.812 (16)	2.45 (2)	2.975 (3)	124 (2)
O5W—H5WB···O4W ⁱ	0.812 (16)	2.178 (18)	2.945 (3)	158 (3)

Symmetry codes: (iii) -*x*, *y*-1/2, -*z*+1/2; (vi) -*x*+1, *y*-1/2, -*z*+1/2; (vii) *x*, *y*-1, *z*; (viii) -*x*+1, *y*+1/2, -*z*+1/2; (ix) *x*, -*y*+1/2, *z*-1/2; (x) *x*-1, *y*, *z*; (i) -*x*, -*y*, -*z*.

Fig. 2

